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a b s t r a c t

In recent years, the use of inertial measurement unit (IMU)-based motion capture (Mocap) systems
in rehabilitation has grown significantly. This paper aimed to provide an overview of current IMU-
based Mocap system designs in the field of rehabilitation, explore the specific applications and
implementation of these systems, and discuss potential future developments considering sensor
limitations. For this review, a systematic literature search was conducted using Scopus, IEEE Xplore,
PubMed, and Web of Science from 2013 to 2022. A total of 65 studies were included and analyzed
based on their rehabilitation application, target population, and system deployment and measurement.
The proportion of rehabilitation assessment, training, and both were 82%, 12%, and 6% respectively.
The results showed that primary focus of the studies was stroke that was one of the most commonly
studied pathological disease. Additionally, general rehabilitation without targeting a specific pathology
was also examined widely, with a particular emphasis on gait analysis. The most common sensor
configuration for gait analysis was two IMUs measuring spatiotemporal parameters of the lower limb.
However, the lack of training applications and upper limb studies could be attributed to the limited
battery life and sensor drift. To address this issue, the use of low-power chips and low-consumption
transmission pathways was a potential way to extend usage time for long-term training. Furthermore,
we suggest the development of a highly integrated multi-modal system with sensor fusion.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rehabilitation is an important disease treatment for people
f all ages and patients. According to Cieza et al. [1], almost
.41 billion individuals benefited from rehabilitation for their
ealth conditions in 2019; this number has increased by 63% from
990 to 2019. Furthermore, with the intensification of population
ging and the increase in human life expectancy, people in their
0 s suffering from chronic diseases share a greater possibility of
njury and body bone fracture. Rehabilitation therapy can help re-
ain or improve motion function and enhance their quality of life
y diagnosing diseases and providing practical therapies. Thus,
ehabilitation plays an increasingly important role in human life.

Whereas the expanding rehabilitation need is largely unmet,
ata show that in some countries, more than half of the people
n need, especially those from the lower class, do not receive
ufficient rehabilitation care. Due to multiple factors such as
he lack of medical funding, rehabilitation resources, and expe-
ienced doctors as well as the relatively expensive costs, people
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with rehabilitation needs are facing severe difficulties. Thus, the
World Health Organization has launched the Rehabilitation 2030
initiative to address this rapidly enlarging unmet rehabilitation
demand and relieve the difficulty among these people [2].

Traditionally, rehabilitation mainly depends on the treatment
given by the rehabilitation therapist. This method is not only
time-consuming and laborious but also lacks quantitative and
systematic standards. Recently, an increasing number of rehabil-
itation equipment have been used in the field of rehabilitation,
which has improved treatment efficiency and achieved electronic
rehabilitation. Therefore, to improve the quality of rehabilitation
and civilian rehabilitation for the public, new rehabilitation needs
to combine traditional rehabilitation with advanced equipment.

1.1. Motion capture in rehabilitation

Motion capture (Mocap) system is an emerging technology
that can capture human motion using inertial measurement unit
(IMU) sensors or optical cameras. It can be used for motion
disability that affects the activity of daily living due to limitation
in range of motion (RoM) and abnormal neural control [3]. A
goniometer is traditionally used for joint angle measurement.
However, the combination of different segment motions renders
niversity. This is an open access article under the CC BY-NC-ND license
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omplex measurements difficult considering alignment with the
oint center.

The Mocap system shows advantages in measuring and de-
reasing the misalignment. Compared with the traditional super-
ision and evaluation conducted by the rehabilitation physician
uring the rehabilitation process, the Mocap system gives accu-
ate joint angle sequences, visualizes the patient’s motion, allows
emote rehabilitation, and provides big databases for further data
rocessing [4].
Mocap systems can be classified into optical motion capture

OMC), inertia-based, electromyography-based, and fusion-based
ystems [5].
Among the Mocap techniques, the marker-based optical Mo-

ap systems exhibit high accuracy in the measurement of human
otion kinematics and are always regarded as the gold stan-
ard when compared with other Mocap systems. Whereas the
rawback of the optical Mocap system is obvious, it needs so-
histicated calibration and requires sufficient illumination back-
rounds. Furthermore, an optical Mocap system is space-limited,
ypically expensive, and not easy to deploy (always needs mark-
rs). The imaging effect is also easily affected by the different
eflective objects and occlusion.

At present, novel low-cost micro-electro-mechanical system
MEMS) inertial sensors have been widely used in Mocap as a
ost-effective system. The inertial sensor usually consists of an
ccelerometer, gyroscope, magnetometer, and signal transmis-
ion chip. The IMUs have several advantages, such as low cost,
ustomization, flexible application, and comfort in wearing.
There are already some successfully commercialized inertial

ocap systems, e.g., Noitom (NOITOM LTD.) and Xsens (Xsens
echnologies B.V.). Many rehabilitation centers have used com-
ercial off-the-shelf products and special applications for motion
nd gait analyses [6]. Study shows that wearable inertial sensor
as been increasingly used in medical application. In rehabil-
tation, an IMU system with long battery life can be effective
n monitoring human motion in daily environments, providing
upplementary information to laboratory tests [7]. However, the
old standard OMC can be difficult to use for continuous mon-
toring due to variations in illumination and the possibility of
cclusion. IMU-based Mocap systems are portable and easy to
eploy, making them a good choice for rehabilitation. In addition,
hey are cost-effective, making them affordable for many users.

The IMU-based Mocap system also has disadvantages [8]: (1)
MU sensors suffer from drifts, which causes the sensing results
o change over time. (2) The wearing method is correlated with
he slight change in relative position when moving the skin or
oosening the fixed device. (3) Magnetometers can be influenced
y external magnetic field. These drawbacks will mainly affect
he accuracy of the result. To address these problems, studies
ave proposed several solutions, such as applying an algorithm
o revise the data, using auto-calibration for the drift, and fusing
ith other systems for comprehensive measuring.

.2. The necessity of this review

Given the multiple benefits of the IMU-based Mocap technol-
gy in rehabilitation and the aforementioned rapid development,
e strongly believe that it is essential to summarize its applica-
ions in rehabilitation and how to perform them. In this review,
e will provide an overall insight into the aforementioned ap-
lications in the field of rehabilitation from 2013 to 2022 and
iscuss the methods for performing.
In recent years, there has been an increasing number of litera-

ure reviews on Mocap in the field of rehabilitation. We consider
he current reviews from two perspectives: technology-based and
pplication-based. Technology-based reviews focus on the design
2

Table 1
Search strategy.
Databases Searching keywords

Scopus
IEEE Xplore
PubMed
Web of Science

(‘‘Motion Captur*’’ OR ‘‘Mocap’’) AND (‘‘IMU’’ OR
‘‘inertia* sensor’’ OR ‘‘Accelerometer’’ OR ‘‘wearable
sensor’’ OR ‘‘Inertial measurement unit’’) AND
(‘‘rehabilitation’’ OR ‘‘Postoperative treatment’’ OR
‘‘human body analysis’’)

and development of Mocap systems. For example, Yahya et al.
[5] discussed upper-limb sensing technology, whereas Walmsley
et al. [9] focused on upper-limb RoM measurement. Díaz et al.
[10] proposed the development of wearable sensors for rehabil-
itation assessment. All of these studies highlight the principles
and advancements of the Mocap technology. Application-based
reviews, on the other hand, demonstrate the use of the Mocap
technology in specific applications. Alarcón-Aldana et al. [11]
described the use of Mocap in the field of rehabilitation combi-
nation with videogames, whereas Figueiredo et al. [12] studied
the assessment of lower limb orthosis-based interventions after
strok. Furthermore, Knippenberg et al. [13] focused on training
with a markerless Mocap system. These studies demonstrate the
benefits of Mocap in different applications, but they are relatively
independent and only focus on the specific applications.

We assumed a scenario in which researchers who have de-
veloped state-of-the-art IMU-based Mocap systems wish to apply
them in the field of rehabilitation. Some studies, such as those
by Wang et al. [14] and Porciuncula et al. [15], analyzed the
development of the technology and its potential applications in
clinical settings, but either summarized upper-body rehabilita-
tion or focused only on wearable sensors, not Mocap systems.
Therefore, we conducted this review, which aimed to describe
the overall system design of IMU-based Mocap and provide clear
instructions on specific rehabilitation applications that can be
implemented using assessment, training, and clinical processes in
rehabilitation.

1.3. Contributions of this review

Briefly claim the contribution of this review:
(1) To give an overview of the current IMU-based Mocap

system design used in the field of rehabilitation.
(2) To discuss in what specific application IMU-based Mocap

systems can be used and their detailed implementation.
(3) To summarize and preview the future development both in

the system design and the implementation method considering
the current limitation.

2. Materials and methods

2.1. Data source and search strategy

This review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) guidelines [16]. The literature search was conducted
using Scopus, IEEE Xplore, PubMed, and Web of Science. The time
range was set to the last 10 years, from January 2013 to August
2022 (see Fig. 1).

The screening process for this research involved dividing the
focus into three categories: motion capture technology, specific
IMU sensors, and applications in the field of rehabilitation. The
specific search strategy is presented in Table 1. It is worth not-
ing that IMUs are also referred to as wearable sensors in some
papers. To broaden the scope of rehabilitation, we also included
synonymous terms, such as postoperative treatment.
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Fig. 1. Flowchart of searching result.
.2. Inclusion criteria

To ensure the relevance and reliability of the selected liter-
ture, strict inclusion criteria were applied during the selection
nd screening processes. Specifically, only literature written in
nglish and published between 2013 and August 2022 were
ncluded in this review. Furthermore, we considered only journal
rticles or conference papers that focused on IMU-based motion
apture system (not OMC or virtual IMU). We also included re-
earch that fused IMU with other sensors. Also, the research must
ave contained a specific method for applying the system in the
ontext of rehabilitation, either designed a system for a specific
isease (e.g., stroke and cerebral palsy) or focused on general
ehabilitation (e.g., gait analysis and monitoring). In addition, the
esearch must have contained specific data that was quantified
o argue the performance of the system and must have been
ethod-oriented with a clear application direction.

.3. Exclusion criteria

Articles focusing only on the design of a high-performance
MU-based Mocap system and lacking specific information on
ow the system is applied in a particular field have been ex-
luded from this review. For example, Slade et al. [17] developed
n open-source real-time IMU-based Mocap system for general
urpose but did not provide details in rehabilitation; thus, it
as excluded from this review. Therefore, the implementation in
ehabilitation is essential. In addition to the aforementioned cri-
eria, the research must focus on capturing human motion, either
ull body or segment motion. Studies on animals and objects were
xcluded from the review.
Table 2 is organized by the date the study was published. This

llows a clear identification of the trend of the studies.
3

3. Results

After the exclusion and literature screening, a total of 384
articles were searched, and 65 papers were selected for analysis.
The overall features are presented in Table 2.

The selected articles may be divided into rehabilitation
applications, target population, and system measurement. This
classification system helps distinguish the implementation, func-
tionality, and effects of the different IMU-based Mocap systems
in the field of rehabilitation. The first dimension is the rehabili-
tation application, which lists all the application scopes. It may
be classified into rehabilitation assessment and rehabilitation
training according to the functional purpose of the application.
The second dimension is target population, which indicates the
target population will be focused on in the different applications.
The third dimension is system deployment and measurement,
which classifies the reviewed articles according to the measured
or analyzed parameters of the IMU-based Mocap system. More
details are discussed in the following sections.

3.1. Rehabilitation application

We divided the rehabilitation applications of the IMU-based
Mocap system into two categories: assessment and training. As-
sessment is crucial in rehabilitation as it helps determine the
severity of a patient’s condition and the effectiveness of the
rehabilitation plan. Furthermore, it involves evaluation of a pa-
tient’s current circumstances, rehabilitation goals, and perfor-
mance, as well as monitoring of their motion and analysis of
relevant parameters. Rehabilitation training involves perform-
ing specific tasks or programs to help patients improve their
performance, typically following an assessment. The training sys-
tem has to provide interventions or feedbacks in real time to
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Table 2
Summary of the included studies.
References IMU system Target population Rehabilitation

application

Number Measurement

Zhang et al. [18] Full body (n = 17) CoM, SA, GMM Sports injured
athletes

Assessment Use IMU to aid in the assessment of
sporting injuries and to monitor the
progress

Zecca et al. [19] Lower limbs (n = 7) JA Gait impairment Assessment Walking assessment

Yurtman and Barshan [20] Lower limbs (n = 5) Body motion Not specified Assessment Classification and evaluation of therapy
exercises using the MTMM-DTW algorithm

Lee et al. [21] Upper arm (n = 7) RoM Stroke Assessment Smartphone-centric system for the
range-of-motion assessment

Moreira et al. [22] Hand (n = 11) Finger flexion Not specified Assessment Design and evaluation of a low-cost
motion-capture glove for hand function
assessment

Carpinella et al. [23] Wrist (n = 1) Accelerometer and
gyroscope signals

Multiple sclerosis Assessment Quantitative assessment of upper-limb
motor function

Papi et al. [24] Lower limbs (n = 2) Kinematics Osteoarthritis
patients

Assessment Provision of objective measures of
performance

van Meulen et al. [25] Full body (n = 17) Arm movement Stroke Assessment Provision of patient-specific performance
assessment for stroke patients in in-home
setting

Tedesco et al. [26] Lower limbs (n = 4) JA, STP Sports injured
athletes

Assessment Provision of a biomechanics assessment

Li et al. [27] Upper arm (n = 4) Kinematics Stroke Assessment Quantitative assessment of the performance
of the single-task upper-limb movements

Ayachi et al. [28] Full body (n = 17) Body segment
posture

Older adult Assessment Auto-detection of daily living activities

Zhao et al. [29] Foot-mounted (n = 2) STPs Cerebral
thrombosis
patients

Assessment An INS system for assessing gait
performance

Zhang et al. [30] Full body (n = 11) Joints orientation Not specified Assessment
and Training

An evaluation system for assessing and
comparing with experts to perform
evaluation and display

Xu et al. [31] Lower limbs (n = 8) FPA Gait impairment Training Use of haptic IMU to train FPA

Woodward et al. [32] Lower limbs (n = 1) Movement and
muscle activity

Cerebral palsy Assessment Fusion of IMU and MMG to measure
motion and muscle and classify

Visi et al. [33] Lower limbs, shanks (n
= 2)

STPs Stroke Assessment Measurement of trends in comparative left
vs right mean stride lengths

Villeneuve et al. [34] Upper arm, wrist (n = 2) Body motion Not specified Assessment IMU for smart home health care,
monitoring, and assessment

Valtin et al. [35] Hand (n = 15) JA Stroke Assessment Assessment of hand function and feedback
applications

Ranganathan et al. [36] Trunk, upper arm,
forearm segment (n = 3)

Body motion Stroke Assessment Mocap used for assessing and monitoring
compensatory movements

Delrobaei et al. [37] Full body (n = 17) Kinematics Dyskinesia, PD Assessment Generation of objective scores for
assessment

Yi et al. [38] Lower limbs (n = 2) JA Duchenne
muscular
dystrophy in
children

Assessment Fusion of IMU and EMG to diagnose and
evaluate therapy and to assist exoskeleton
control

Wang et al. [39] Lower limbs (n = 4) STPs Gait impairment Assessment Estimation of individual step length and
spatial asymmetry of gait

Kutilek et al. [40] Upper arm (n = 4) Kinematics Not specified Assessment Quantitative evaluation of the movement
activity of the upper limbs during
rehabilitation

Karatsidis et al. [41] Lower limbs (n = 7) FPA Gait impairment Training AR feedback wearable Mocap system for
gait retraining

Held et al. [42] Full body (n = 14) Body segment
posture

Stroke Assessment Evaluation of the rehabilitation progress in
a clinical and home environment

England et al. [43] Lower limbs (n = 4) Kinematics Post-operative ACL
patients

Training Measurement of kinematics and
incorporation of the expertise into feedback
for the wearer

Sharif Bidabadi et al. [44] Lower limbs (n = 1) Foot pitch angle Gait impairment Assessment Validation of the foot pitch angle
measurement in gait analysis

(continued on next page)
4
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Table 2 (continued).
References IMU system Target population Rehabilitation

application

Number Measurement

Teufl et al. [45] Lower limbs (n = 7) JA, STPs,
kinematics

THA Training Application of SVM for classification for
incorporation in a mobile gait-feedback
system

Marín et al. [46] Full body (n = 12) Body motion Spasticity patient Assessment
and training

Guidelines for the integration of Mocap gait
analysis in hospital rehabilitation

Liu et al. [47] Finger, wrist (n = 2) Kinematics Stroke Assessment Application of machine learning to
monitoring hand use

Lin et al. [48] Hand (n = 16) Kinematics Stroke Assessment Provision of hand motion to physicians for
adjusting rehabilitation treatments

Lefeber et al. [49] Lower limbs (n = 2) STPs Stroke Assessment Validation of the availability of inertial
physilog sensors in gait analysis

Konrath et al. [50] Full body (n = 17) Body motion Osteoarthritis
patients

Assessment Estimation of the knee adduction moment
and tibiofemoral joint contact force

Kayaalp et al. [51] Lower limbs (n = 2) RoM Orthopedic
patients

Assessment Validation of the availability of IMU in
monitoring postoperative rehabilitation

Beange et al. [52] Lumbar (n = 2) Spine
flexion–extension

Low back pain Assessment Assessment of functional movement quality
and control of the lumbar spine

Weygers et al. [53] Lower limbs (n = 2) JA Gait impairment Assessment Validation of the availability of IMU in gait
analysis

Warmerdam et al. [54] Upper arm, wrist (n = 1) Arm swing
parameters

PD patients Assessment Evaluation and quantification of arm swing
using IMU and sensor-based algorithm

Tsakanikas et al. [55] Head and wrist (n = 2) Body motion Not specified Assessment
and Training

Embed IMU, pressure insoles, and RGB
camera to develop a virtual coaching
ecosystem

Shin et al. [56] Lower limbs (n = 7) Kinematics Stroke Assessment Quantifying dosage of physical therapy

RajKumar et al. [57] Upper arm (n = 5) RoM Not specified Assessment RoM assessment

Qiu et al. [58] Lower limbs (n = 7) STPs Stroke Assessment Gait posture evaluation for subjects with
unbalanced gaits

Marin et al. [59] Lower limbs (n = 8) Kinematics Spasticity patient Assessment Assessment of improvements in patients
following interventions

Hutabarat et al. [60] Lower limbs, shoes (n =

2)
STPs Gait impairment Assessment Quantitative gait assessment using only two

IMU sensors

De Baets et al. [61] Full body (n = 9) RoM Adhesive capsulitis Assessment Evaluation of disease progression in clinical
settings

Aranda-Valera et al. [62] Lumbar (n = 2) Kinematics Axial
spondyloarthritis
patient

Assessment Evaluation of spinal mobility in individuals

Werner et al. [63] Lower limbs (n = 2) STPs SCI patients Assessment Gait assessments using IMU

Wang et al. [64] Lower limbs (n = 2) STPs and
kinematic
parameters

Gait impairment Assessment Proposal of a new gait variable to derive an
IMU-based gait normalcy index for
evaluation

Vargas-Valencia et al. [65] Lower limbs, shank, and
thigh (n = 2)

JA Knee injury Assessment Fusion of IMU and POF to detect knee
angle for assessment

Tsilomitrou et al. [66] Upper arm (n = 2) Body motion Not specified Training System for a patient’s progress supervision
during rehabilitation exercises

Schlage et al. [67] Lower limbs (n = 5) JA Knee-injured
patients

Assessment Mocap used as an alternative long-term
measurement method

Parker et al. [68] Lower limbs (n = 7) Kinematics Older adult Assessment IMU Mocap used to compare the different
walking conditions

Monoli et al. [69] Lower limbs (n = 2) JA Gait impairment Assessment Execution of underwater gait assessment

Hwang and Effenberg [70] Full body (n = 16) Head trajectories Gait impairment Assessment Gait symmetry analysis

Hou et al. [71] Full body (n = 6) STPs Gait impairment
of healthy young
adults

Assessment Gait assessment in healthy young adults

Fan et al. [72] Lower limbs (n = 4) Knee flexion,
abduction, and
internal rotation

ACL injury patient Assessment Knee flexion, abduction, and internal
rotation estimation during ACL injury risk
assessment tests

Di Paolo et al. [73] Full body (n = 15) Kinematics ACL injury patient Assessment Quantification of joint kinematics for
return-to-sport assessment

Arens et al. [74] Lower limbs, shoes (n =

2)
STPs Stroke Training Real-time gait metric estimation,

exo-suit-assisted gait training

Patel et al. [75] Lower limbs (n = 2) STPs Gait impairment Assessment Validation of the availability of IMU in gait
analysis

(continued on next page)
5
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Table 2 (continued).
References IMU system Target population Rehabilitation

application

Number Measurement

Mittag et al. [76] Wrist (n = 1) Inclination Children with
cerebral palsy

Training Designing of a method for real-time control
of exergames of cerebral palsy children

Mallat et al. [77] Upper arm, hand (n = 3) JA Poststroke patients Assessment Proposal of an affordable Mocap fusing IMU
with AR validated with six rehabilitation
tasks

Li et al. [78] Lower limbs (n = 7) Kinematics Gait impairment Assessment Development of a body sensor network for
reconstruction movement and a neural
network for classifying gait phase

Sung et al. [79] Lower limbs (n = 1) JA Gait impairment Assessment Proposal of a method fusing IMU and RNN
for measuring multi-joint angle

Camargo et al. [80] Lower limbs (n = 4) Kinematics Not specified Training Fusion of IMU, EMG, and goniometers to
anticipate joint moment

Gu et al. [81] Lower limbs (n = 2) Kinematics Not specified Assessment Use of 2 IMU sensors to estimate muscle
activity during walking

Tedesco et al. [82] Lower limbs (n = 2) RoM Knee-injured
patients

Assessment
and training

Designing of a multi-sensor (EMG, IMU)
wearable system for knee rehabilitation
Fig. 2. The proportion of each classification.
elp patients achieve better outcomes. Fig. 2 summarizes the
atio of rehabilitation assessment and training and the specific
pplication they are used for.

.1.1. Rehabilitation assessment
Among all the rehabilitation applications, assessment accounts

or the most proportion, which includes performance evalua-
ion, parameter analysis, motion classification, activity monitor-
ng, quantified dosage, and diagnosis.

A total of 30 studies [19,22–27,29,35,37,40,42,48,49,52–54,58–
1,63,64,67–71,75] suggested that the IMU-based Mocap system
an be used to conduct performance evaluation.
Among these performance evaluations, 12 articles [19,29,49,

3,58–60,62–64,69,71,75] focused on gait performance assess-
ent. Marin et al. [59] proposed a magnitude-based decision
tatistical method for analyzing gait in order by comparing two
ifferent sessions from single patients. Some studies [49,53,75]
alidated the availability of IMU-based Mocap system used in gait
nalysis and further Zhao et al. [29] designed a system with a
ero velocity update (ZUPT) assist inertial navigation system (INS)
lgorithm to achieve more accurate quantified gait parameters.
utabarat et al. [60] used 2 IMUs to extract 17 gait features
o quantify gait analysis. Aside from the general gait assess-
ent, Monoli et al. [69] conducted underwater gait assessment
6

due to the robustness of the IMU-based Mocap system. Further-
more, Wang et al. [64] proposed a new gait variable to derive
an IMU-based gait normalcy index for evaluation. Except for the
gait performance, other performance evaluation studies focused
on the upper-limb performance evaluation, mostly as [25]. Some
studies, such as Li et al. [27] and Kutilek et al. [40], also quan-
tified the upper-limb performance via kinematics analysis, and
[54] achieved such quantification using arm swing parameters.
Furthermore, for the compactness of MEMS IMUs, they can be set
on fingers for assessing the hand function by executing different
hand motions [35] [48]. Although most of these studies were set
in laboratory environment, De Baets et al. [61] and Held et al.
[42] conducted upper-limb evaluation in the clinical environ-
ment. Meanwhile, Schlage et al. [67] used IMU-based Mocap as
a long-term assessment method to generate adequate data for
guiding flexible therapy. Aside from the lower- and upper-limb
assessment, Beange et al. [52] used the IMUs to assess lumbar
spine control and functional movement.

As for the monitoring purpose, Kayaalp et al. [51] validated
the availability of IMU in the monitoring of postoperative reha-
bilitation. Zhang et al. [18], Villeneuve et al. [34] and Ranganathan
et al. [36] aid assessment with monitioring. Liu et al. [47] develop
a new pipeline using machine learning for minitoring.
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Table 3
Target population.
Target population Reference

Neurological Rehabilitation Stroke [21,25,27,33,35,36,42,47–49,56,58,74,77]
Spasticity [46,59]
Cerebral palsy [32,76]
Parkinson’s disease [37,54]
Spinal cord injury [63]
Other neurological diseases [23,29,64]

Musculoskeletal Impairment Osteoarthritis [24,50,51,62]
Anterior cruciate ligament (ACL) injury [43,72,73]
Other musculoskeletal impairment [18,26,38,45,52,61,65,67,82]

General Rehabilitation Gait impairment with no specified disease [19,31,39,41,44,53,60,69–71,75,78,79]
The elder [28,68]
Not specified [20,22,30,34,40,55,57,66,80,81]
Another important aspect of assessment involves the use of
MU-based Mocap to analyze various parameters. These parame-
ers can be derived from general movements or raw sensor data
nd act as indicators for assessment. For example, the RoM is
ften analyzed, as observed in the studies by RajKumar et al.
57], whereas Lee et al. [21] used a smartphone-centric system
or RoM assessment. Joint rotation is also commonly measured,
s demonstrated by Fan et al. [72] in their research on the use of
otation as a measure for injury and disease rehabilitation.

Other assessment applications, such as classification, diagno-
is, and dosage quantification, are also applications of the IMU-
ased Mocap system for rehabilitation assessment. Furthermore,
ome fusions are applied to achieve multi-model assessment.
hese fusion technologies provide supplementary information
uch as muscle activities with the introduction of other sensors.
oodward et al. [32] fused the IMU with mechanomyography

MMG) to measure the motion and the muscle activity to perform
lassification. Yi et al. [38] fused IMU with electromyography
EMG) to diagnose and evaluate therapy, which can also cooper-
te with the exoskeleton for assistance control. Vargas-Valencia
t al. [65] fused polymer optical fiber (POF) to detect joint an-
les to conduct an assessment. Mallat et al. [77] proposed an
ffordable motion capture system that combines IMUs with aug-
ented reality markers tracked with an affordable RGB camera
nd validated it with six rehabilitation tasks. These multi-model
ssessments provide additional information, such as muscle data,
hich cannot be obtained using IMU alone; they also play an

mportant role in dynamic assessment. In addition, multi-model
ystems show potentials for assisting other devices in performing
ehabilitation therapies.

.1.2. Rehabilitation training
Unlike rehabilitation evaluation with miscellaneous parame-

ers, rehabilitation training has some fixed characteristics,
amely, training content and intervention or feedback.
At present, there are relatively few articles that have used

MU to evaluate training programs. Feedback is a crucial as-
ect of training applications. It can remind the user or assis-
ive device to adjust the training content or guide a change
f posture. Real-time motion recovery systems, such as those
roposed by Tsilomitrou et al. [66] and England et al. [43],
rovide users with information on their current motion and can
e used for monitoring training progress and providing cus-
omized training plans to experts. Timmermans et al. [7] designed
technology-supported task-oriented arm training regime (T-

OAT) using tracking sensors, an exercise board, and a software-
ased toolkit to improve the arm performance of stroke patients.
-TOAT was found to significantly improve patients’ health-
elated quality of life, both physically and mentally. Virtual reality
VR) can also be used as a feedback device to provide a more
mmersive environment for the user, as shown by Karatsidis et al.
7

[41]. In addition to visual feedback, IMU can provide systematic
feedback to facilitate the control of external devices during train-
ing. For example, Teufl et al. [45] used support vector machine
(SVM) classification with IMU to create a mobile gait-feedback
system, whereas Mittag et al. [76] used IMU to perform real-time
control of exergames for children with cerebral palsy. Arens et al.
[74] used IMU to measure real-time gait metric estimation, which
was used to assist in exo-suit gait training, and Camargo et al. [80]
adopted the fusion of IMU, EMG, and goniometers to anticipate
joint movement during ambulation tasks.

Other studies that include both assessment and training, such
as [30,46,55], are presented below. They all used visual feed-
back to give the users an intuitive obverse of their real-time
training. Zhang et al. [30] and Tsakanikas et al. [55] developed
virtual coaching ecosystems containing the expert guide, visual
feedback, and systematic analysis. Marín et al. [46] provided
some guidelines to integrate Mocap in hospital rehabilitation,
which contained both assessment and training for gait analysis.
Tedesco et al. [82] designed a multi-sensor including EMG and
IMU wearable system for knee rehabilitation.

3.2. Target population

In this part of the review, we inventoried the target pop-
ulation for the application of the IMU-based Mocap system in
rehabilitation. To better understand the trend of the use of the
IMU-based Mocap system and determine which target popula-
tion it is most effective for, we divided the target population
into three categories based on previous research [14]: neuro-
logical rehabilitation (including stroke, spasticity, cerebral palsy,
and Parkinson’s disease), musculoskeletal impairment (includ-
ing osteoarthritis and other orthopedic diseases), and general
rehabilitation (with not specific pathology).

The different target populations are listed in Table 3. However,
most studies focused on general rehabilitation (n = 25), in which
healthy people were recruited in the experiment design and the
researches did not focus on specific pathology. Among these, gait
is mostly investigated with 13 studies included. Parker et al. [68]
and Ayachi et al. [28] focused on the elder as the target popula-
tion. Among neurological problems (n = 24), stroke appears to
be the most worrisome, with 14 studies [21,25,27,33,35,36,42,47–
49,56,58,74,77] designing the IMU-based Mocap system for stroke
patients. Neurological diseases include spasticity [46,59], cerebral
palsy [32,76], Parkinson’s disease [37,54], spinal cord injury [63],
and other diseases [23,29,64].

As for the musculoskeletal impairment (n = 16), four stud-
ies [24,50,51,62] focused on osteoarthritis. Musculoskeletal dis-
eases include anterior cruciate ligament (ACL) injury [43,72,73],
and other musculoskeletal diseases [18,26,38,45,52,61,65,67,82].

Besides, a relative large porpotion of studies did not specified
any target population and provided general used systems, for
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Table 4
Classification based on system deployment.
IMU placement Reference

Upper limbs n = 1 [23,54,76]
n = 2 [34,47,52,55,66]
n = 3 [36,77]
n = 4 [27,40]
n = 5 [57]
n = 7 [21]
n = 11 [22]
n = 15 [35]
n = 16 [48]

Lower limbs n = 1 [32,44,79]
n = 2 [24,29,33,38,49,51,53,60,62–65,69,74,75,81,82]
n = 4 [26,39,43,72,80]
n = 5 [20,67]
n = 6 [71]
n = 7 [19,41,45,56,58,68,78]
n = 8 [31,59]
n = 9 [61]

Full body n = 11 [30]
n = 12 [46]
n = 14 [42]
n = 15 [73]
n = 16 [70]
n = 17 [18,25,28,37,50]

example Yurtman and Barshan [20] derived a novel algorithm to
detect and evaluate therapy exercises and some of them designed
a monitoring system as [34,55,66].

3.3. System deployment and measurement

As for the different rehabilitation applications, system deploy-
ent and measurement parameters are important for particular

ehabilitation usage. System deployment calculates the number
f IMUs used and their placement. Measurement parameters can
e classified into several dimensions: human kinematics focuses
n any inclusive joints; gait parameters focus exclusively on the
ower limbs; and body motion focuses on whole-body movement.

.3.1. System deployment
Table 4 presents the sensor placement for all the studies

ncluded, and Fig. 3 shows the colormap of research hotspots,
ighlighting the distribution of areas with the most sensor place-
ent. Accordingly, for the upper-body analysis, two IMU sensors
re usually selected and placed on the upper arm and forearm.
or the lower-limb analysis, two IMU sensors are selected and
laced on each of the legs for gait analysis and the thigh and
hank for knee joint analysis. As for the full-body analysis, 17
MUs are usually selected and placed symmetrically on both sides,
ncluding at the feet, lower legs, upper legs, hands, lower arms,
pper arms, shoulders, pelvis, back, and head. Hutabarat et al.
60] and Arens et al. [74] designed an in-shoe Mocap system, and
ach IMU was placed on one side of the shoes. Tsakanikas et al.
55] and Hwang and Effenberg [70] tracked head motion with one
MU sensor mounted on the head. Some studies focused on hand
unction, and their IMU setups significantly varied. Liu et al. [47]
nalyzed hand function using 2 IMUs mounted on the hand or
he finger, whereas Lin et al. [48] placed 16 IMUs on the hand
or their customized hand-tracking glove, which could perform
ophisticated motion tracking into finger-level precision.

.3.2. Measurement
Table 5 presents the system measurements of all the selected

tudies in three categories: human kinematics, gait parameters,
nd body motion.
8

Fig. 3. IMU sensor colormap of different segments (research frequency for
different segments).

When measuring human kinematics, most of them are evalu-
ated through the measurement of joint orientation or direct use of
kinematics data for analysis. Generally, joint orientation is used
in performance evaluation in lower-limb gait analysis. Tedesco
et al. [26], Schlage et al. [67], Monoli et al. [69], Zecca et al. [19],
and Weygers et al. [53] measured the joint angles of the lower
limbs which provides an available method for gait assessment.
Kinematic data were used to generate objective evaluation scores
to assess the performance, such as [37]. In the gait analysis, the
spatio-temporal parameters are considered standard parameters,
which are the most measured in the studies by [29,33,39,49,58,
60,63,64,71,74,75]. Furthermore, foot progression angle (FPA) is
always used in the training process of rehabilitation, as studies
by Xu et al. [31],Karatsidis et al. [41] used haptic and AR to
perform rehabilitation training.

In the measurement of human body motion, body segment
motion is usually measured to conduct both assessment and
training. In [83], this parameter was used to recover human mo-
tion. In [55], IMU, pressure insoles, and RGB cameras were used to
recover body motion. Visualization was easy to perform using this
developed virtual coaching ecosystem. In [70], head trajectories
were measured to analyze gait symmetry. In the study by [32],
movement and muscle activity were measured by the fusion of
IMU and MMG for motion classification. Furthermore, the arm
swing parameters were measured in [54] to evaluate and quantify
arm swing using IMU and a sensor-based algorithm.

4. Discussion

This article reviews the rehabilitation application of the IMU-
based Mocap system over the last 10 years. All the articles
included here were reviewed from three perspectives: rehabil-
itation application, target population, and system deployment
and measurement. From these three perspectives, we expect
to provide an overall demonstration of the IMU-based Mocap
application in rehabilitation and introduce a general deployment
method. In this part, we will discuss each of the separate di-
mensions and analyze the result and the possible reasons. Then,
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Table 5
Classification based on measurement parameters.
Measurement parameters Reference

Human kinematics Range of motion [21,51,57,61,82]
Joint orientation [19,22,26,30,35,38,45,52,53,65,67,69,72,77,79]
Kinematics [23,24,27,37,40,43,45,47,48,56,59,62,64,68,73,76,78,80,81]

Gait parameters Spatio-temporal parameters [29,33,39,45,49,58,60,63,64,71,74,75]
Foot progression angle [31,41]
Centre of mass [18]
Foot pitch angle [44]

Body motion Body segment motion [20,28,34,36,42,46,50,55,66]
Head trajectories [70]
Arm swing parameters [25,54]
Movement and muscle activity [32]
based on the literature reviewed, we would like to provide some
objective opinions on future system development and provide a
preview of application trends.

4.1. Rehabilitation application

Various applications have been applied among the selected
rticles, including performance assessment, parameter analysis,
onitoring, classification, diagnosis, dosage quantification, and

raining.
The results indicated that the use of IMU-based Mocap in re-

abilitation assessment is quite mature. Many articles [49,53,75]
alidated the acceptable accuracy of the IMU sensor compared
ith the gold standard optical Mocap.
Among the 80% of the assessment, 46% is about performance

ssessment, as it is the major application in the assessment. For
ost of the performance assessments, they have a pre-existing
etric as a reference, for example, van Meulen et al. [25] pro-
ided the Fugl-Meyer Assessment scale (uFMA) metric for arm
ovement evaluation, and Delrobaei et al. [37] performed Unified
yskinesia Rating Scale (UDysRS) for Parkinson Rating.
These metrics have been considered a gold standard in clinical

edicine, and the IMU-based Mocap system has the ability to
uantify the results and better fit the metric.
Considering that in the current rehabilitation medical field,

octors usually assess the patient’s performance based on several
undamental features, such as joint angles and RoM, which are
lways intuitive and mostly rely on experience. Delrobaei et al.
37] proposed the use of wearable technology to generate severity
cores. Researchers may use IMU to generate credible metrics
oncurrent with existing metrics to perform a better-quantified
ssessment.
Besides, the convenience of deployment and compactness of

he sensor size also provide a possible chance for rehabilitation
ssessment. Article Zecca et al. [19] proposed the use of ultra-
iniaturized, portable IMU for long-term assessment with better
earing experience. The exclusive property of IMU, which is
eing free from occlusion and illumination, enables it to perform
emote and extreme measurements. For example, Monoli et al.
69] has applied IMU for underwater gait analysis, whereas Lin
t al. [48] proposed a modular data glove with 16 IMUs to mea-
ure the wearer’s finger RoM, with the lowest accuracy being
%.
Compared with articles on assessment, with a proportion of

5%, the articles focusing on training alone are relatively few,
ith a proportion of only 10%. Although training is still an im-
ortant part in the rehabilitation therapy process for studies, as
hown by Spooren et al. [84], the knowledge and evidence of Mo-
ap use for training are scarce. Here, we proposed some possible
easons for the unbalanced ratio of rehabilitation assessment and

raining.

9

Rehabilitation training is time-consuming and costly in clinical
practice, which means they always need to have a long-term
training process to meet a certain treatment circle. Timmermans
et al. [7] designed a training protocol lasting for 8 weeks. Mea-
surements were performed not only after 4 and 8 weeks of
training but also 6 months post-training. This validation period
of the rehabilitation training is quite long. Unless the purpose of
such studies is to confirm the curative effect of a newly proposed
training method, few participants would be willing to partici-
pate. Furthermore, during the training program, therapists also
need to be involved in assisting and providing instructions. For
researchers, it definitely increases the difficulty of performing the
experiment.

The accuracy of Mocap technology is highly related to its price,
and for long-term training, the sensor has to be equipped with
sufficient battery to ensure battery life. As mentioned by Xu et al.
[31], their sensor has roughly 1.5 h of battery life, which is enough
to meet most rehabilitation demands but could be insufficient
for longer training or monitoring. We investigated the systems
in the studies included and found that the main reason for the
problem of low battery life is the high power consumption of the
signal transimission module. The majority of signal transmission
pathways in these systems are WIFI, leading to a high power con-
sumption, whereas a relatively low proportion make the use of
Bluetooth. We proposed the development of a more efficient chip
or the use of a power-saving transmission method, which would
make the system more competent for long-term application.

Despite the relatively low cost of IMU sensors, it is still un-
affordable for general patients to perform home-based train-
ing. According to Knippenberg et al. [13], markerless Mocaps
(e.g., Kinect) are frequently used owing to their ease of deploy-
ment and lower price.

Furthermore, Timmermans et al. [7] and Knippenberg et al.
[13] stated that current studies for rehabilitation training lack
novel task-oriented training. Thus, we proposed that future tech-
nology developments should take up the challenge to combine
IMU with a task-oriented approach.

Thus, we believe that combining VR or AR with another novel
task-oriented training content is also a promising trend in reha-
bilitation training. Karatsidis et al. [41] combined an IMU Mocap
system and AR to perform gait retraining to alter the FPA.

The integration of Mocap and AI has the potential to signif-
icantly improve the efficiency of Mocap systems. For example,
according to Sung et al. [79], the use of AI can allow Mocap
systems to use fewer sensors while still accurately measuring
multi-joint angles using recurrent neural networks. In addition, Li
et al. [78] demonstrated the use of neural networks to classify gait
phases in Mocap systems. Overall, the incorporation of AI into
Mocap technology shows great promise for improving accuracy
and efficiency.

Based on the rehabilitation applications, we can summarize
that the applications of IMU-based Mocap systems mainly focus
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n the repair of human motion function owning to the motion
nformation retrieved from the system. However, performing re-
abilitation only based on kinematics is insufficient; research
hows that muscle activity also plays an important role in reha-
ilitation [85].
In recent years, there has been an increasing focus on the

usion of different sensors to create multi-modal systems for
ehabilitation. These systems provide multiple perspectives for
nalysis and can help reduce errors caused by IMU sensors. For
xample, Vargas-Valencia et al. [65] used IMU sensors in combi-
ation with POF to measure knee angle and found that the fusion
f these two sensors led to more accurate results and was not
nfluenced by magnetic fields.

Multi-modal systems are often necessary due to the limited
easurement dimensions of IMU sensors, which may not pro-
ide all the necessary data on their own. To add information,
ther types of sensors are often introduced. For example, Yi
t al. [38] combined IMU sensors with EMG signals to automat-
cally diagnose the progress of Duchenne muscular dystrophy,
hereas Woodward et al. [32] used the fusion of IMU and MMG
ensors to measure motion and muscle activity to classify human
ctivities. Tedesco et al. [82] used EMG and IMU sensors to create
multi-sensor knee rehabilitation system, in which the data
easured by the EMG sensors could help improve evaluation
fficiency and accuracy.
In addition to providing additional data, the use of multiple

ensors can also help overcome the limitations of IMU sensors,
uch as limited battery life and accuracy. For example, Tsakanikas
t al. [55] used IMU sensors in combination with pressure insoles
nd an RGB camera to develop a virtual coaching ecosystem.
imilarly, Mallat et al. [77] proposed the use of IMU sensors
n combination with AR for an affordable Mocap system for
ehabilitation tasks.

Overall, the potential of multi-modal systems is clear, and we
elieve that the fusion of other sensors will be important for
omprehensive rehabilitation applications in the future.

.2. Target population

The target population is generally classified into three dimen-
ions: neurological rehabilitation, musculoskeletal impairment,
nd general rehabilitation. For neuro-rehabilitation, stroke pa-
ients are the most studied group. Stroke affects the patient’s
otion ability and causes disability or limitation in joint orienta-

ion. About 14 articles focused on stroke rehabilitation, whereas
ther neurological diseases shared a relatively low ratio.
A total of 16 articles were included in the analysis of mus-

uloskeletal impairments, with the majority of studies focusing
n osteoarthritis (n = 4). Additionally, there were 25 studies that
xamined general rehabilitation using IMU-based motion capture
echnology. These findings demonstrate the versatility of this
echnology, which can be used not only for specific diseases but
lso for broader applications such as diagnosis, disease preven-
ion, and daily monitoring. As a result, it has the potential to be
idely accessible to the general public.
Many researches focused on the target population of a specific

isease, however, typically in their experimental design section,
hey still chose healthy people as experiment subjects. This is
artly because of the difficulty in performing clinical experiments
nd the patient’s willingness to participate.

.3. System deployment and measurement

Our review also indicated that knowing the detailed system
eployment and the parameter measured by the system is bene-
icial for the implementation of similar applications and provides

guideline for further research.

10
Regarding the physical property of IMU sensors, they are usu-
ally mounted on the target body segment to measure the kine-
matics of the body part. Thus, the IMU placement is divided
according to the distribution of sensors. Among them, the lower
limbs are more usually studied, and in most cases, two IMUs are
placed on the foot. This may be because gait analysis of the lower
limbs has standardized research paradigms that are repeatable
and easier to execute. Furthermore, the wearing complexity and
battery life may also be the confining conditions to limit full body
or long-term analysis.

To address the difficulty of wearing, some studies have de-
signed integrated systems to locate the fixed IMUs into clothes,
providing easy-to-wear properties and decreasing the impact of
soft tissue artifacts. Hutabarat et al. [60] and Arens et al. [74]
designed to put the IMU sensors into shoes to develop an in-shoe
system, and Lin et al. [48] modulated a data glove containing 16
IMUs.

For the system measurement, we divided it from fundamental
kinematic to complicated body motions. For human kinemat-
ics, joint orientation is mostly measured for convenience and
obviousness, followed by specific gait parameters, such as spatio-
temporal parameters. This parameter is the most commonly used
in gait analysis, with 12 studies included. Furthermore, the trend
of measuring human body motion, especially specific motion, is
increasing. With these measured motions, classification can be
easily performed; they can also provide direct visual feedback to
the user that is essential for rehabilitation training.

4.4. Inspiration for development tendency

The development of IMU-based Mocap system is still in its
infancy, and many applications can be developed. A summarized
probable trend of the application of IMU-based Mocap system in
the field of rehabilitation is presented below:

(1) Multiple sensor fusion with IMU can lead to a multi-modal
system to provide a comprehensive rehabilitation assessment.

(2) In-home rehabilitation training systems, coupled with long-
termmonitoring and assistance from other complementary equip-
ments, can provide quasi-clinical rehabilitation for individuals
undergoing therapy.

(3) A highly integrated system can provide better user experi-
ence in wearability and functionality.

5. Conclusion

Researchers have collaborated to implement IMU-based Mo-
cap systems in the field of rehabilitation, with a focus on three di-
mensions: rehabilitation application, target population, and sys-
tem deployment and measurement. The most commonly studied
application was performance assessment, whereas rehabilitation
training received relatively less emphasis. Pathological condi-
tions such as neuro-disease and musculoskeletal disease, in which
stroke being the most frequently analyzed, were the main target
populations. Additionally, non-pathological rehabilitation, with a
focus on gait analysis, was also widely analyzed. Regarding sys-
tem deployment and measurement, the statistical data showed
that lower-limb gait analysis using two IMUs to measure spatio-
temporal parameters was the most commonly studied. However,
the limitation of sensor drift and low battery life has resulted in
a lack of precise motion analysis of the upper limb and long-term
training applications. To address these limitations, we propose a
potential solution from two perspectives. First, the trend of devel-
oping power-efficient chips or lower-consumption transmission
methods has been on the rise for long-term therapy. Second,
sensor fusion is being used to create multi-modal systems that

minimize sensor errors and provide additional information.
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ppendix. Abbreviations

Mocap Motion capture
IMU Inertial measurement unit
OMC Optical motion capture
ADL Activities of daily living
MEMS Micro-electro-mechanical system
AR Augmented reality
RNN Recurrent neural network
STP Spatiotemporal parameter
CoM Center of mass
SA Symmetry angle
JA Joint angle
GMM Gaussian mixture model
INS Inertial navigation system
EMG Electromyography
MTMM-DTW Multitemplate multi-match dynamic

time warping
FPA Foot progression angle
MMG Mechanomyography
POF Polymer optical fiber
SVM Support vector machine
THA Total hip arthroplasty
ACL Anterior cruciate ligament
RoM Range of motion
SCI Spinal cord injury
PD Parkinson’s disease
PRISMA Preferred reporting items for systematic

reviews and meta-analysis
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